

Security Research Lab. www.securityresearch.at 1 / 7

FirewireBlocker
A Software Defense against Firewire-based
Physical Security Attacks on Windows Systems

Benjamin Böck
Security Research Lab

Secure Business Austria
bboeck@securityresearch.at

David Huemer
Institute of Software Technology and

Interactive Systems
Vienna University of Technology

dhuemer@ifs.tuwien.ac.at

V 1.0, 2009-08-12

Latest version at
http://www.securityresearch.at/publications/windows_firewire_blocker.pdf

1 Overview
In this paper we present a software solution to Firewire-based physical security attacks on Microsoft
Windows operating systems. While the problem is described in section 2, our solution is presented in
section 3, which also gives details on the concrete implementation and decisions taken in the course
of development. Section 4 (page 4) describes the positive testing results and observations made.
Finally, section 5 (page 5) summarizes the results and provides suggestions for further research.

2 Problem
As outlined in our paper [01], modern operating systems (including Windows 7) seem susceptible to
Firewire-based physical security attacks. As Firewire allows full read/write memory access via Direct
Memory Access (DMA), running systems can be cracked if an attacker has access to an active Firewire
port. As a result, attackers can gain full access to running systems. For example, the Windows
password check can be bypassed, even if the screen is locked or the system is brought back from
standby mode. Moreover, encryption solutions like Microsoft Encrypted File System (EFS) and even
full disk encryption solutions like Microsoft BitLocker cannot protect against such attacks in most
cases, if the system is running and the boot phase has finished [01].

2.1 Threat Scenario
It is unlikely that an adversary is able to attack your system via the Firewire port while you are sitting
in front of it – at least without you noticing it. The threat scenario we want to cover is thus the
following: While you are away from your system but it is either running and screen-locked or in
standby mode, an adversary sneaks up to the machine and uses an active Firewire port to conduct
the attack. Systems without a built-in Firewire interface are at risk as well as PCMCIA/CardBus
interfaces (e.g., PCMCIA slot) on the system would allow on-the-fly installation of Firewire interfaces.

http://www.securityresearch.at/publications/windows_firewire_blocker.pdf�

Security Research Lab. www.securityresearch.at 2 / 7

This applies for situations where full disk encryption is implemented. Without full disk encryption,
the system is vulnerable in any event if it can be placed into a running state with an enabled
Firewire port.

Thus, the following system configurations and states have to be distinguished and are either covered
or not covered by our solution.

Windows State Full disk encryption

 With Pre-boot Authentication Without Pre-boot Authentication

Running/locked Covered Covered

Standby Covered Covered

Powered off Not coveredA Covered

Hibernated Not coveredA Covered

Running/unlocked Not coveredB Not coveredB

A In these scenarios, pre-boot authentication protects against Firewire-based physical attacks.

B If an attacker is able to gain physical access to an unlocked, running system with a logged-on user,
all is lost. Our solution cannot protect against acts of negligence.

3 Solution and Implementation
Our FirewireBlocker software [02] establishes a simple yet effective defense against Firewire-based
physical security attacks on unattended systems. The basic idea is to automatically disable Firewire
interfaces whenever the screen is locked or users log off and re-enable them as soon as they return.

The solution is implemented as a .NET Windows service running with SYSTEM privileges. Two basic
programmatic problems had to be solved:

• Getting noticed of system logon/display lock/screensaver events;

• Disabling and re-enabling Firewire and PCMCIA/CardBus controllers (as Firewire interfaces
could be added on-the-fly using the latter).

3.1 Event Notification
One of the requirements for our solution is receiving notification of events like:

• Logon: Occurs when a user logs on to Windows;

• Logoff: Occurs when a user logs off from Windows;

• DisplayLock: Occurs when a user locks the screen;

• DisplayUnlock: Occurs when a user unlocks the screen;

Security Research Lab. www.securityresearch.at 3 / 7

• StartScreenSaver: Occurs when screen saver starts;

• StopScreenSaver: Occurs when screen saver stops.

The following sections describe different methods to reach this goal along with specific pros and
cons. We ultimately settled for the System Event Notification Service (SENS), as described in section
3.1.4 System Event Notification Service (SENS), page 3.

3.1.1 .NET SystemEvents
.NET 2.0+ provides the SystemEvents.SessionSwitch event [03] which “occurs when the currently
logged-in user has changed”. However, the event is realized as a listener to window messages. As
services do not have message loops, they cannot receive window messages – thus, these kind of
events cannot be used in services (no event is ever raised).

Developers can work around the limitation by making the service interactive (allowing access to the
desktop) and including an invisible window to receive the messages. This method is described by
Microsoft in [04]. However, such a design introduces significant risk for privilege escalation attacks, if
the concerned service is running with high privileges. In the past, for example, such design has been
exploitable through shatter attacks [05]. Luckily, the inherent security risk is also taken into account
by Windows Vista, which presents annoying nag screens whenever a service tries to create a window.
One might be able to circumvent this warning message by moving the window to another window
station but for aforementioned security reasons we did not try to do so.

3.1.2 WMI Syslog Monitoring
Another “solution” often mentioned online (for example, [06]) is to turn on logon auditing via policy
and then use the ManagementEventWatcher and WMI (Windows Management Instrumentation) to
receive notification of said events. Obviously, such a solution is not generic enough for universal
application, as prerequisites (turning on logon auditing) are required.

3.1.3 Windows Notification Packages
“In pre-Windows Vista versions of Windows, Winlogon notification packages are registered DLLs that
the Winlogon process loads. These DLLs receive Winlogon notifications and handle different
Winlogon events.” [07]

As our solution aims to also work on current versions of Windows Vista and Windows 7, Windows
Notification Packages could not be considered.

3.1.4 System Event Notification Service (SENS)
According to Microsoft [07], most events accessible via Windows Notification Packages are also
usable via the System Event Notification Service (SENS), which is also available on more recent
versions like Windows Vista and Windows 7 and thus represents an adequate technique for our
solution. It is available on Windows 2000 and later. The ISensLogon interface is described in [08].

3.2 Enabling/Disabling Hardware
Besides receiving notification on Logon-events, the other problem to be solved was programmatic
enabling/disabling of hardware devices. A quick search yielded Microsoft’s DevCon command line

Security Research Lab. www.securityresearch.at 4 / 7

utility. According to Microsoft, source code for DevCon is also available in the Windows DDK [09],
which has been superseded by the Windows Driver Kit (WDK) [10].

By accessing SetupAPI via .NET, hardware devices can be listed and enabled/disabled
programmatically. Device classes are denoted by unique GUIDs. Several “System-Defined Device
Setup Classes” exist, as described by Microsoft. The two device classes relevant to our problem are
[11]:

• IEEE 1394 Host Bus Controller
o Class = 1394
o ClassGuid = {6bdd1fc1-810f-11d0-bec7-08002be2092f}
o This class includes 1394 host controllers connected on a PCI bus, but not 1394

peripherals. Drivers for this class are system-supplied.

• PCMCIA Adapters
o Class = PCMCIA
o ClassGuid = {4d36e977-e325-11ce-bfc1-08002be10318}
o This class includes PCMCIA and CardBus host controllers, but not PCMCIA or CardBus

peripherals. Drivers for this class are system-supplied.

4 Testing
To test our solution, we conducted Firewire-based physical security attacks on a Windows 7 RTM (32
and 64 bit) and on a Windows Vista system, as described in our paper [01]. Without our application,
the attacks succeeded as anticipated.

With running FirewireBlocker service, Firewire and PCMCIA/CardBus controllers were automatically
turned off as soon as the PC was locked, a user logged off or the screensaver started. Controllers
were automatically enabled again when the complementary events occurred. Trying to abuse a
Firewire port of a system protected this way led to an error on the attacker side; attacks did not
succeed.

Our defense software thus successfully protects against Firewire-based physical security attacks on
running, unattended systems.

4.1 Handling already disabled Devices
One problem coming to mind is how to handle devices which have already been disabled
intentionally. These devices should not be enabled automatically because they most likely were
disabled for a reason. In order to cope with this problem, we thought of temporarily storing the
original state of devices before disabling them so already disabled devices are left out during the re-
enabling phase.

However, on our test systems, we noticed that devices which have originally been disabled, then
programmatically “disabled again” and finally enabled through our application redeemed their
original (disabled) status. Interestingly, the effect even outlasts a reboot.

Security Research Lab. www.securityresearch.at 5 / 7

Further testing showed that we could only programmatically enable devices we had disabled the
same way. Devices disabled manually could not be enabled programmatically with our application.

Though this result is actually in favor of our intentions and saves us from additional programming
work, it is subject to further research to investigate the cause and universal validity of the described
behavior.

4.2 StartScreenSaver and DisplayLock
While Windows 9x allowed for a separate screen saver password, Windows 2000 and up use the
standard Windows Logon information dialog when checking the “On resume, password protect”
option. We thus assumed the system would automatically trigger the Logoff event when the
screensaver starts. However, in the course of our tests it showed that the Logoff event occurs when
the screensaver is turned off. We thus had to monitor screensaver events as well, in order to close
the possible attack window during the time the screensaver is running.

5 Conclusion and Future Work
In this paper we present a simple yet effective software defense against hardware Firewire-based
physical security attacks on Windows systems. Using our approach, Firewire and PCMCIA/CardBus
interfaces which could potentially allow Direct Memory Access (DMA), are only enabled while users
are actively working with a system, that is, a user is logged on, the screen unlocked and no
screensaver running. Adversaries targeting the system cannot conduct Firewire-based physical
security attacks while the system is locked. Our implementation is lightweight, easy to install and
maintenance free, as the Windows service can keep running in the background, likely without users
ever noticing.

The solution should be checked for possible side effects, further testing on different systems is
required. For example, it is unclear why manually disabled devices cannot be enabled
programmatically through our solution.

By now, we do not automatically disable devices when our service starts (normally after system
boot). Theoretically, this leaves the following attack window: an attacker reaching an unattended,
running system (Firewire devices enabled), pulls the plug (shutting down would lead our service to
disable the devices) and then reboots the system, with the devices staying enabled. However, if a
system is running with Firewire ports enabled, an attacker could have gone for a Firewire-based
physical attack directly. We thus do not recognize additional risk in not disabling Firewire devices on
start of our service. We may change our design in future versions, if required.

Problems may arise where Firewire and/or PCMCIA/Cardbus components should be able to operate
while the system is in a locked state. For example, PCMCIA/CardBus network cards lose connection
automatically, as soon as the screen is locked or the user logs off. On the other hand, hard drives
connected via Firewire will prevent the service from disabling the Firewire controller if a copy
operation is in progress. Future versions should try to meet such requirements.

Security Research Lab. www.securityresearch.at 6 / 7

In this first proof-of-concept, the FirewireBlocker service is running with SYSTEM privileges in order
to be able to enable/disable hardware. While users can normally not interface with our service, risk
for privilege escalation remains. For example, if users with normal user rights have write access on
the executable, they could replace it with a malign piece of software which would then be started
with SYSTEM privileges. Future versions should establish the principle of least privilege. Further
research is required to identify the fewest required privileges the FirewireBlocker service has to run
with in order to be able to serve its purpose.

6 Annex

6.1 About the Authors
Benjamin Böck is employed at Secure Business Austria, an industrial research center for IT-Security
based in Vienna/Austria and is also an independent information security consultant. He holds several
IT-related master’s degrees from Vienna University of Technology where he is currently a Ph.D.
student. Benjamin lectures on information security related topics at the Vienna University of
Technology and several universities of applied sciences; he is also an instructor for professional
penetration testing courses. He has a background in IT auditing from one of the Big Four and also
explored other information security related domains such as digital forensics. His main interests are
in the area of penetration testing with a focus on web applications.

David Huemer is employed at Vienna University of Technology and Secure Business Austria. His
topics of interest are Auditing, Penetration Testing (Web, Application, Operating System, Network),
Grid and Cloud Computing Security and Linux/Unix. He holds a master’s degree in Business
Informatics from Vienna University of Technology and is CISSP, CEH and LPIC-1 certified. Currently he
is finishing his Ph.D. in the area of Grid Computing Security and his master’s degree in Software
Engineering and Internet Computing, both at Vienna University of Technology.

6.2 About the Security Research Lab
Members of the Security Research Lab conduct security research on various subject areas of
information security. It is situated in Vienna, Austria.

For more information please refer to http://www.securityresearch.at

Security Research is a strategic partner of Secure Business Austria, an industrial research center for
IT-Security founded by the Vienna University of Technology, Graz University of Technology and
University of Vienna. http://www.sba-research.org/

6.3 Acknowledgement
The work described in this paper has partially been supported by Secure Business Austria and Vienna
University of Technology.

http://www.securityresearch.at/�
http://www.sba-research.org/�

Security Research Lab. www.securityresearch.at 7 / 7

7 References
[01] Benjamin Böck. Firewire-based Physical Security Attacks on Windows 7, EFS and BitLocker.

http://www.securityresearch.at/publications/windows7_firewire_physical_attacks.pdf
(accessed August 13, 2009)

[02] FirewireBlocker (software).
 http://www.securityresearch.at/publications/firewireblocker.zip (accessed August 13, 2009)

[03] Microsoft MSDN. SystemEvents.SessionSwitch Event.
http://msdn.microsoft.com/en-us/library/microsoft.win32.systemevents.sessionswitch.aspx
(accessed August 13, 2009)

[04] Microsoft MSDN. SystemEvents Class. Includes code example that shows how to handle
system events by using a hidden form in a Windows service.
http://msdn.microsoft.com/en-us/library/microsoft.win32.systemevents.aspx (accessed
August 13, 2009)

[05] Adrian Leuenberger. Shatter Attack. Privilege Escalation on Win32 Systems.
http://www.csnc.ch/misc/files/publications/ShatterAttack_CSNC.pdf (accessed August 13,
2009)

[06] Microsoft MSDN Visual C# Developer Center. Detecting User logon event.
http://social.msdn.microsoft.com/forums/en-US/csharpgeneral/thread/9fd8bd47-82b5-
4283-8a73-da2c8631fef8 (accessed August 13, 2009)

[07] Microsoft Technet. Winlogon Notification Packages Removed: Impact on Windows Vista
Planning and Deployment.
http://technet.microsoft.com/en-us/library/cc721961(WS.10).aspx (accessed August 13,
2009)

[08] Microsoft MSDN. ISensLogon Interface.
http://msdn.microsoft.com/en-us/library/aa376860(VS.85).aspx (accessed August 13, 2009)

[09] Microsoft Support. The DevCon command-line utility functions as an alternative to Device
Manager.
http://support.microsoft.com/kb/311272/en-us (accessed August 13, 2009)

[10] Microsoft Windows Hardware Developer Central. Windows Driver Kit (WDK).
http://www.microsoft.com/whdc/Devtools/wdk/default.mspx (accessed August 13, 2009)

[11] Microsoft MSDN. System-Supplied Device Setup Classes.
http://msdn.microsoft.com/en-us/library/ms791134.aspx (accessed August 13, 2009)

http://www.securityresearch.at/publications/windows7_firewire_physical_attacks.pdf�
http://www.securityresearch.at/publications/firewireblocker.zip�
http://msdn.microsoft.com/en-us/library/microsoft.win32.systemevents.sessionswitch.aspx�
http://msdn.microsoft.com/en-us/library/microsoft.win32.systemevents.aspx�
http://www.csnc.ch/misc/files/publications/ShatterAttack_CSNC.pdf�
http://social.msdn.microsoft.com/forums/en-US/csharpgeneral/thread/9fd8bd47-82b5-4283-8a73-da2c8631fef8�
http://social.msdn.microsoft.com/forums/en-US/csharpgeneral/thread/9fd8bd47-82b5-4283-8a73-da2c8631fef8�
http://technet.microsoft.com/en-us/library/cc721961(WS.10).aspx�
http://msdn.microsoft.com/en-us/library/aa376860(VS.85).aspx�
http://support.microsoft.com/kb/311272/en-us�
http://www.microsoft.com/whdc/Devtools/wdk/default.mspx�
http://msdn.microsoft.com/en-us/library/ms791134.aspx�

	1 Overview
	2 Problem
	2.1 Threat Scenario

	3 Solution and Implementation
	3.1 Event Notification
	3.1.1 .NET SystemEvents
	3.1.2 WMI Syslog Monitoring
	3.1.3 Windows Notification Packages
	3.1.4 System Event Notification Service (SENS)

	3.2 Enabling/Disabling Hardware

	4 Testing
	4.1 Handling already disabled Devices
	4.2 StartScreenSaver and DisplayLock

	5 Conclusion and Future Work
	6 Annex
	6.1 About the Authors
	6.2 About the Security Research Lab
	6.3 Acknowledgement

	7 References

